首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4573篇
  免费   56篇
  国内免费   183篇
电工技术   10篇
综合类   75篇
化学工业   953篇
金属工艺   1215篇
机械仪表   240篇
建筑科学   65篇
矿业工程   87篇
能源动力   332篇
轻工业   23篇
石油天然气   34篇
武器工业   11篇
无线电   100篇
一般工业技术   1370篇
冶金工业   206篇
原子能技术   54篇
自动化技术   37篇
  2023年   41篇
  2022年   75篇
  2021年   138篇
  2020年   114篇
  2019年   121篇
  2018年   110篇
  2017年   132篇
  2016年   91篇
  2015年   117篇
  2014年   223篇
  2013年   271篇
  2012年   204篇
  2011年   403篇
  2010年   293篇
  2009年   356篇
  2008年   280篇
  2007年   317篇
  2006年   251篇
  2005年   187篇
  2004年   156篇
  2003年   155篇
  2002年   116篇
  2001年   99篇
  2000年   99篇
  1999年   80篇
  1998年   90篇
  1997年   60篇
  1996年   47篇
  1995年   58篇
  1994年   30篇
  1993年   26篇
  1992年   13篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1983年   2篇
  1981年   3篇
  1965年   1篇
排序方式: 共有4812条查询结果,搜索用时 31 毫秒
41.
《Advanced Powder Technology》2020,31(9):4119-4128
Arc discharge synthesis has industrial relevance due to its low cost and scale-up potential. The production of titanium nitride nanoparticles was achieved by direct current arc discharge in an atmospheric-pressured ambient composed of N2 and Ar. We systematically investigated the effect of the synthesis parameters, including quench gas velocity, quench gas composition, and applied arc current, on the particle quality, yield, and size. It is found that increasing quench gas velocity enables to produce particles with a primary size of 10–15 nm, while titanium nitride particles of 20–50 nm are produced at low quench gas velocity based on scanning electron microscope (SEM) analysis. X-ray diffraction (XRD) results indicated that titanium nitride particles produced at various nitrogen compositions are almost stoichiometric, while the crystallite size increases almost 20 nm when increasing nitrogen contents in the quench gas. Quench gas composition also has a significant impact on the arc voltage as well as particle production rate. When increasing the nitrogen concentration from 20% to 100%, the production rate can be enhanced by a factor of three. Besides, raising the applied arc current from 12 A to 50 A leads to a yield enhancement of factor 10. According to the Brunauer-Emmett-Teller (BET) measurement, the increase of applied arc current has a limited impact on primary particle size. The enhancement in particle production rate is mainly reflected by the larger agglomerate sizes and agglomerate number concentration. Additionally, based on experimental observations and previous studies, a mechanism is presented to explain the growth of deposits on the cathode tip.  相似文献   
42.
Hierarchical architecture of anatase/rutile-mixed phases TiO2 with hollow interior was successfully fabricated via a Topotactic synthetic method, including the synthesis of CaTiO3 precursors and transforming them into TiO2 through ion-exchange process. The as-synthesized TiO2 hierarchical architectures as the anode materials were used as lithium-ion batteries (LIBs). Compared with TiO2 samples, the TiO2@SnO2-5% shows the improved lithium storage capacity, cycling performance and rate properties. The impedance of the TiO2 electrode decreases evidently after adding few amount of SnO2. The hollow hierarchical structure with different compositions provide much more active sites, and well connect interface among anatase, rutile, and SnO2, facilitating the electron and ion transport quickly and efficiently. Addition appropriate number of SnO2 not only well kept the hierarchical architecture but also enhanced the capacity and conductivity of the TiO2 sample. As a result, TiO2@SnO2-5% exhibited excellent lithium storage performance.  相似文献   
43.
钛合金以其高比强度、优良的耐海水腐蚀性能,成为未来船舶选材的热点。综述了海水管路用钛合金的材料选用、焊接技术、弯管技术、腐蚀防护以及防海生物污损等方面的研究工作进展并进行分析,证明钛合金是船舶海水管路系统的理想选择,以期推动钛合金在船舶海水管路的推广和应用。  相似文献   
44.
Titanium dioxide ceramic coatings have been used as catalysts in green technologies for water treatment. However, without the presence of a dopant, its photocatalytic activity is limited to the ultraviolet radiation region. The photocatalytic activity and the structural characteristics of undoped and sulfur-doped TiO2 films grown at 400 °C by metallorganic chemical vapor deposition (MOCVD) were studied. The photocatalytic behavior of the films was evaluated by methyl orange dye degradation under visible light. The results suggested the substitution of Ti4+ cations by S6+ ions into TiO2 structure of the doped samples. SO42? groups were observed on the surface. S-TiO2 film exhibited good photocatalytic activity under visible light irradiation, and the luminous intensity strongly influences the photocatalytic behavior of the S-TiO2 films. The results supported the idea that the sulfur-doped TiO2 films grown by MOCVD may be promising catalysts for water treatment under sunlight or visible light bulbs.  相似文献   
45.
46.
47.
In this study, the effect of potassium hydroxide concentration in anodization bath, anodization time, and calcination temperature on the photo-electrochemical behavior of metallic titanium/mixed phase titanium oxide is investigated. Further, the phase structure of a titanium oxide photocatalyst prepared on a titanium electrode through a high-voltage anodization method is examined. The study exploits photo-electrochemical, Fourier transform infrared spectroscopy attenuated total reflectance (FTIR–ATR), X-ray diffraction, and Raman spectroscopic methods to obtain better insights into the mechanism of mixed-phase titanium oxide formation. In this regard, the photo-electrochemical properties of the photocatalysts prepared in single excitation energy, violet light (410 nm), were investigated. The anodization time and the potassium hydroxide concentration in the anodization bath have significant effects on the photo-electrochemical properties of the photocatalysts. The experiments show that the effect of potassium hydroxide concentration is a function of the anodization potential applied, demonstrating different patterns as the anodization potential changes. Furthermore, FTIR-ATR, X-ray diffraction, and Raman spectroscopic studies reveal that the extended anodization times decrease the population of OH-containing groups, leading to lower photo-electrochemical performance. On the other hand, the formation of anatase phases becomes more favorable only in the extended anodization times before application of the calcination process. Additionally, the calcination temperature has a significant impact on the anatase to rutile ratio. Finally, increasing potassium hydroxide concentration leads to the formation of an amorphous titanium oxide layer. It can be concluded that the obtained information might have a significant impact on the preparation of titanium oxide and other metal oxide photocatalysts through the high voltage anodization process.  相似文献   
48.
49.
The influence of electrochemical charging of hydrogen at j = ?5 mA/cm2 for 6, 12, 48 and 96 h on the structural and the mechanical behavior of wrought and electron beam melting (EBM) Ti–6Al–4V alloys containing 6 wt% β and similar impurities level was investigated. The length of the α/β interphase boundaries in the EBM alloy was larger by 34% compared to that in the wrought alloy. The small punch test (SPT) technique was used to characterize the mechanical behavior of the non-hydrogenated and hydrogenated specimens. It was found that the maximum load and the displacement at maximum load of the wrought alloy remained nearly stable after 6 h of charging, showing a maximum decrease of ~32% and 11%, respectively. Similarly, hydrogenation of the EBM alloy resulted in a gradual degradation in mechanical properties with charging time, up to ~81% and 86% in pop-in load and displacement at the “pop-in” load, respectively. The mode of fracture of the wrought alloy changed from ductile to semi-brittle with mud-cracking in all hydrogenated specimens. In contrast, the mode of fracture of the EBM alloy changed from a mixed mode ductile-brittle fracture to brittle fracture with star-like morphology. The degraded mechanical properties of the EBM alloy are attributed to its α/β lamellar microstructure which acted as a short-circuit path and enhanced hydrogen diffusion into the bulk as well as δa and δb hydride formation on the surface. In contrast, a surface layer with higher concentration of δa and δb hydrides in the wrought alloy served as a barrier to hydrogen uptake into the bulk and increased the alloy resistivity to hydrogen embrittlement (HE). This study shows that EBM Ti–6Al–4V alloy is more susceptible to mechanical degradation due to HE than wrought Ti–6Al–4V alloy.  相似文献   
50.
The wetness impregnation method was used to synthesize 0.1% CdSe/TiO2 photocatalysts with different atomic molar ratios (90–10, 70–30, 50–50, and 30–70). These catalysts were characterized by XRD, SEM-EDX and mapping, TEM-EDS, UV–VIS spectroscopy, fluorescence spectroscopy, XPS, TPR, TPO, and TPD analyses. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) analyses were performed to examine the photocatalytic activity for photocatalytic fuel cells (PFCs) in glucose solution in the dark and under UV illumination. The characterization analyses revealed that anatase TiO2 formed the catalyst and electronic structure and surface properties changed when doped with metal. The photocatalytic glucose electrooxidation (PGE) results demonstrate that the 0.1% CdSe(50-50)/TiO2 catalyst has higher photocatalytic activity, stability, and resistance than other catalysts both in the dark (2.71 mA cm?2) and under UV illumination (7.20 mA cm?2). These results offer a promising new type of photocatalyst for PFC applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号